行業(yè)新聞|2022-05-26| 深圳維動自動化
主要傳動結構有行星輪,太陽輪和內齒圈。行星輪減速就是齒輪減速的原理,有一個軸線位置固定的齒輪叫中心輪或太陽輪,在太陽輪邊上有軸線變動的齒輪,既作自轉又公轉的齒輪叫行星輪,行星輪有支持構件叫行星架,通過行星架將動力傳到軸上,再傳給其它齒輪。它們由一組若干個齒輪組成一個輪系。只有一個原動件,這種周轉輪系稱為行星輪系。行星減速機是伺服減速機的一種,下面來分析行星減速機內部結構圖及運行原理。
行星減速機是運動控制系統中連接伺服電機和應用負載的一種機械傳動組件。行星減速機在機械設備的運控系統中起到的作用主要包括:傳輸電機動力和扭矩;傳輸和匹配動力轉速;調整應用端機械負載與驅動側電機之間的慣量匹配;
行星減速機內部結構圖
可以看到,在行星齒輪組的結構中,有多個齒輪沿減速機殼體內圈環(huán)繞在一個中心齒輪周圍,并且在行星減速機運轉工作時,隨著中心齒輪的自轉,環(huán)繞在周邊的幾個齒輪也會圍繞中心齒輪一起“公轉”。因為核心傳動部分的布局非常類似太陽系中行星們圍繞太陽公轉的樣子,所以這種減速機被稱為“行星減速機”。中心齒輪通常被稱為“太陽輪”,由輸入端伺服電機通過輸入軸驅動旋轉。
行星減速機內部結構圖有多個圍繞太陽輪旋轉的齒輪被稱為“行星輪”,其一側與太陽輪咬合,另一側與減速機殼體內壁上的環(huán)形內齒圈咬合,承載著由輸入軸通過太陽輪傳遞過來的轉矩動力,并通過輸出軸將動力傳輸到負載端。正常工作時,行星輪圍繞太陽輪“公轉”的運行軌道就是減速機殼體內壁上的環(huán)形內齒圈。
當太陽輪在伺服電機的驅動下旋轉時,與行星輪的咬合作用促使行星輪產生自轉;同時,由于行星輪又有另外一側與減速機殼體內壁上的環(huán)形內齒圈的咬合,最終在自轉驅動力的作用下,行星輪將沿著與太陽輪旋轉相同的方向在環(huán)形內齒圈上滾動,形成圍繞太陽輪旋轉的“公轉”運動。通常,每臺行星減速機都會有多個行星輪,它們會在輸入軸和太陽輪旋轉驅動力的作用下,同時圍繞中心太陽輪旋轉,共同承擔和傳遞減速機的輸出動力。
不難看出,行星減速機的電機側輸入轉速(即:太陽輪的轉速),要比其負載側輸出轉速(即行星輪圍繞太陽輪公轉的速度)要高,這也是為什么它會被稱作“減速機”的原因。
電機驅動側與應用輸出側之間的轉速比值,稱為行星減速機的減速比,簡稱“ 速比”,通常在產品規(guī)格中用字母 “ i ” 表示,它是由環(huán)形內齒圈與太陽輪的尺寸(周長或齒數)之比決定的。一般情況下,具有單級減速齒輪組的行星減速機速比通常在 3 ~ 10 之間;速比超過 10 以上的行星減速機,需要使用兩級(或以上)的行星齒輪組減速。
和所有運控傳動機構一樣,在運控設備中使用行星減速機時,也需要考慮到其傳動效率、剛性和精度。而由于在運轉時的咬合齒數較多,齒輪嚙合的總體接觸面積也比較大,因此,相比普通的固定齒輪減速機,行星減速機的動力傳輸效率更高,具備更強的轉矩動力輸出能力,同時其傳動剛性也更硬。通常伺服行星減速機的傳動效率可以達到 97% 以上,背隙一般低于3arcmin,剛性可達3Nm/arcmin甚至更高。
行星減速機運行原理(圖解)
(1)齒圈固定,太陽輪主動,行星架被動。
從演示中可以看出,此種組合為降速傳動,通常傳動比一般為2.5~5,轉向相同。
(2)齒圈固定,行星架主動,太陽輪被動。
從演示中可以看出,此種組合為升速傳動,傳動比一般為0.2~0.4,轉向相同。
(3)太陽輪固定,齒圈主動,行星架被動。
從演示中可以看出,此種組合為降速傳動,傳動比一般為1.25~1.67,轉向相同。
(4)太陽輪固定,行星架主動,齒圈被動。
從演示中可以看出,此種組合為升速傳動,傳動比一般為0.6~0.8,轉向相同。
(5)行星架固定,太陽輪主動,齒圈被動。
從演示中可以看出此種組合為降速傳動,傳動比一般為1.5~4,轉向相反。
(6)行星架固定,齒圈主動,太陽輪被動。
從演示中可以看出此種組合為升速傳動,傳動比一般為0.25~0.67,轉向相反。
(7)把三元件中任意兩元件結合為一體的情況:
當把行星架和齒圈結合為一體作為主動件,太陽輪為被動件或者把太陽輪和行星架結合為一體作為主動件,齒圈作為被動件的運動情況。
從演示中我們可以看出,行星齒輪間沒有相對運動,作為一個整體運轉,傳動比為1,轉向相同。汽車上常用此種組合方式組成直接檔。
8)三元件中任一元件為主動,其余的兩元件自由:
從分析中可知,其余兩元件無確定的轉速輸出。第六種組合方式,由于升速較大,主被動件的轉向相反,在汽車上通常不用這種組合。其余的七種組合方式比較常用。
微信掃一掃